

Presentación

Planificación estratégica de explotaciones de caving por sub niveles en Mediana Minería

Ph.D Raúl Castro, Universidad de Chile M.Sc. Álvaro Altamirano, BCTEC Ingeniería y Tecnología

08 de Agosto 2016

Contenidos

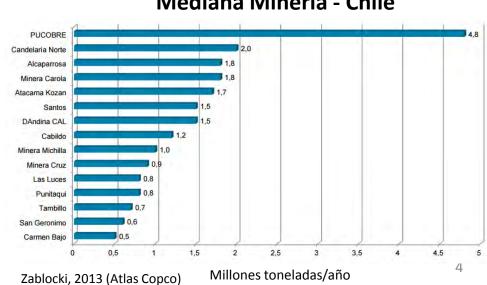
Minería Subterránea en Chile

Sublevel Stoping

Sublevel Caving

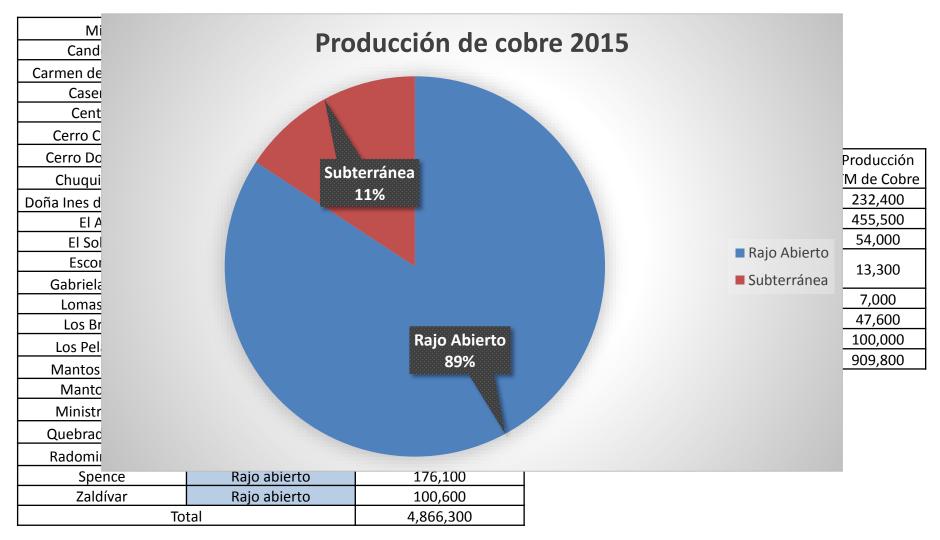
Planificación en Sublevel Caving

Casos de Estudios


Futuro

Minería Subterránea - Chile

El sistema de explotación en la mediana minería es principalmente por método subterráneo, con una producción entre 300 a 8.000 tpd, lo que significa de 100.000 a 3 Millones de toneladas de mineral/año.

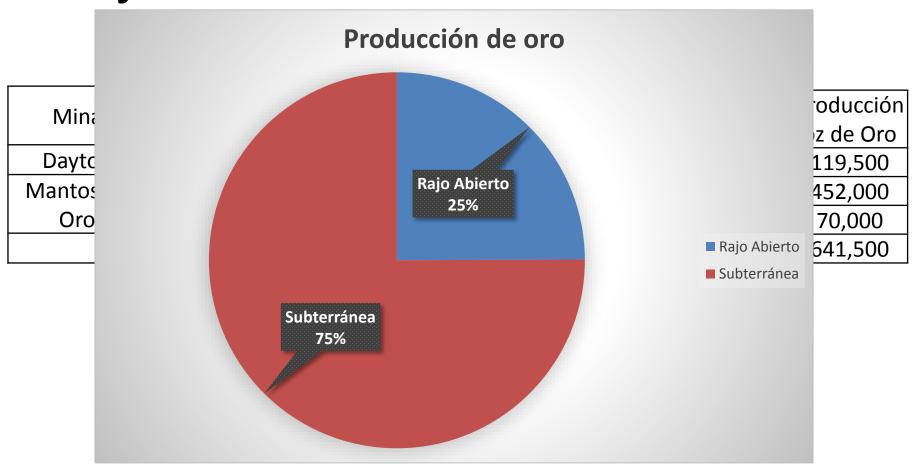


Rajo abierto vs subterránea - Cobre

F			
Mina	Método de explotación	Producción TM de Cobre	
Candelaria	Rajo abierto	134,700	
Carmen de Andacollo	Rajo abierto	75,800	
Caserones	Rajo abierto	44,600	
Centinela	Rajo abierto	274,500	
Cerro Colorado	Rajo abierto	79,600	
Cerro Dominador	Rajo abierto	150,000	
Chuquicamata	Rajo abierto	340,400	
Doña Ines de Collahuasi	Rajo abierto	470,400	
El Abra	Rajo abierto	166,400	
El Soldado	Rajo abierto	51,500	
Escondida	Rajo abierto	1,165,400	
Gabriela Mistral	Rajo abierto	121,000	
Lomas Bayas	Rajo abierto	66,400	
Los Bronces	Rajo abierto	416,300	
Los Pelambres	Rajo abierto	404,600	
Mantos Blancos	Rajo abierto	54,600	
Manto verde	Rajo abierto	56,800	
Ministro Hales	Rajo abierto	141,200	
Quebrada Blanca	Rajo abierto	48,100	
Radomiro Tomic	Rajo abierto	327,300	
Spence	Rajo abierto	176,100	
Zaldívar	Rajo abierto	100,600	
То	4,866,300		

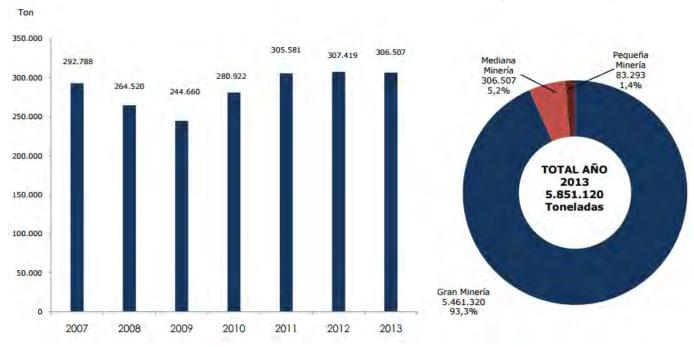
Mina	Método de explotación	Producción TM de Cobre	
Andina	Block Caving	232,400	
El Teniente	Block Caving	455,500	
Salvador	Block Caving	54,000	
Atacama Kozan	Sub level Stoping	13,300	
Las Cenizas	Sub level Stoping	7,000	
Michilla	Sub level Stoping	47,600	
Pucobre	Pucobre Sub level Stoping		
	909,800		

Rajo abierto vs subterránea - Cobre



Rajo abierto vs subterránea - Oro

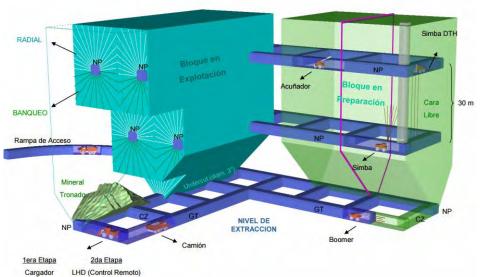
Mina	Método de	Producción	
IVIIIId	explotación	oz de Oro	
Dayton	Rajo abierto	35,000	
Mantos de	Daio abierto	178,000	
Oro	Rajo abierto		
Total		213,000	


Mina	Método de	Producción	
	explotación	oz de Oro	
Florida	Sub level Stoping	119,500	
El Peñón	Sub level Stoping	452,000	
Pimentón		70,000	
Total		641,500	

Rajo abierto vs subterránea - Oro

Minería Subterránea – Mediana Mineria

Producción de cobre de la mediana minería en Chile (2007-2013)

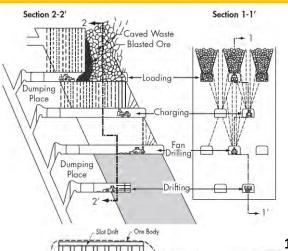


Fuente: Sernageomin

Desafíos (Sergio Hernández, 2014 - Cochilco):

- Retos: costos, escases hídrica, falta de mano de obra calificada y alto precio de la energía.
- Aumentar y diversificar las fuentes de financiamiento
- Asociaciones con empresas de la gran minería para explotar yacimientos de tamaño medio.
- Aumentar los niveles de eficiencia y productividad. Hacer frente a precios más acotados.
- Aumentar inversiones propias en exploración.

Sublevel Stoping – Sublevel Caving



Sublevel Stoping Ventajas:

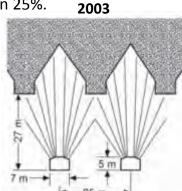
- Favorable para mecanización.
- Tasa de producción moderada a alta (25.000 ton/mes)
- Recuperación sobre 90%.
- Dilución: < 20%.
- Perforaciones pueden adelantarse.

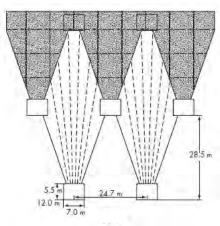
Desventajas:

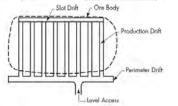
- Gran capital: Bastantes desarrollos antes de inicial la producción.
- No selectivo.
- Ineficiente a bajas inclinaciones.

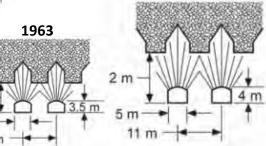
Ventajas Sublevel Caving:

- Alta capacidad productiva.
- Layout general: simple y regular.
- Desarrollo, tronadura y manejo de mineral se realizan en niveles distintos, con escasa interferencia.


Intensiva utilización de equipos mecanizados de alta productividad. 2008

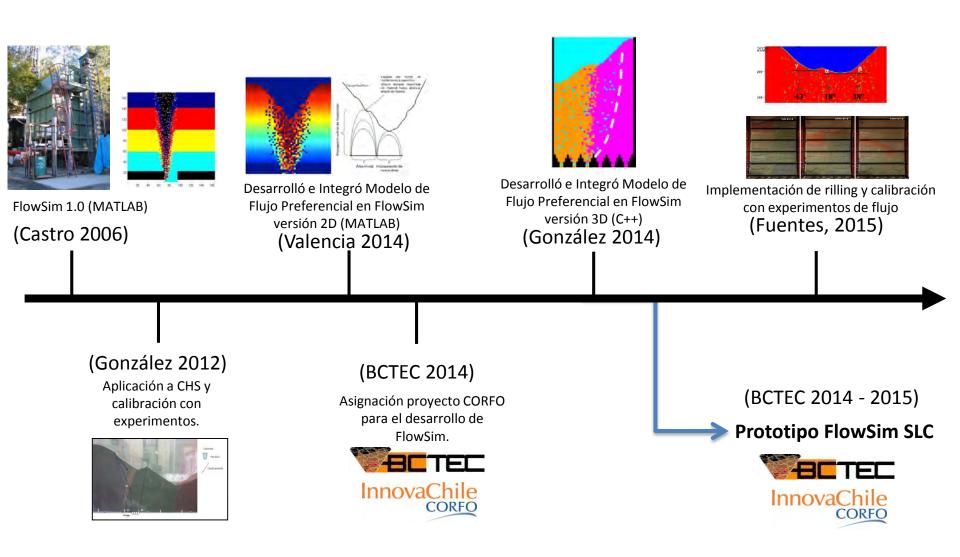

Desventajas:


Alta dilución, por lo menos un 25%.


1983

Altos desarrollos.

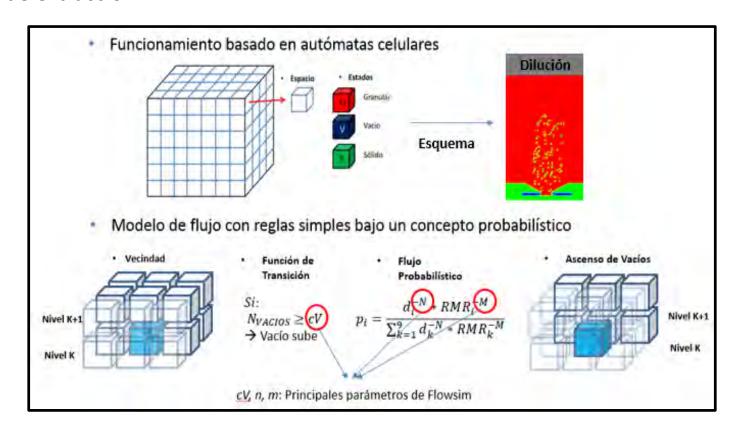
Sublevel Caving


FlowSim Sub Level Caving \rightarrow Entrega una mayor confiabilidad del plan minero (dilución y leyes extraídas).

Desafíos (Sergio Hernández, 2014 - Cochilco):

- Remas costos, escases hídrica, falta de mano de obra calificada y alto precio de la societ
 jó.
- Aumentar y diversificar las fuentes de financiamiento
- Asociaciones con empresas de la gran minería para explotar yacimientos de tamaño medio.
- Aumentar los niveles de eficiencia y productividad. Hacer frente a precios más acotados.
- Aumentar inversiones propias en exploracióle.

Evaluación simulación - FlowSim → Evaluación de múltiples escenarios de flujo para diferentes estrategias de extracción en menor tiempo de simulación.


Herramientas de Simulación - Caving

FlowSim Sublevel Caving

• Inputs:

- Modelo de bloques
- Ubicación espacial de calles de producción
- Ritmo de producción
- Secuenciamiento de extracción
- Criterios de extracción

FlowSim Sublevel Caving

Objetivo

Desarrollar una herramienta que emule el flujo gravitacional en una mina de Sub Level Caving, permitiendo la generación de planes de producción en base a criterios de planificación para la extracción.

- Objetivos Específicos
 - Emular una mina de Sub Level Caving.
 - Criterios de planificación FlowSim SLC.
 - Cuantificar diferentes escenarios de extracción de forma simultanea.
 - Obtener un plan minero en base al análisis de resultados de dilución, recuperación y cobre fino desde las simulaciones.

FlowSim SLC

FlowSim SLC Predic 1.0

Yacimiento

•Modelo de Bloques

Modelo Económico

- •Se define las Reservas.
- •Ley de Corte.
- •Ley Media In-situ.
- Dilución Planificada.

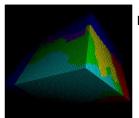
Diseño Minero

- •Largo de Calle
- Distancia entre Subniveles
- Distancia entres Calles
- Burden
- •Toneladas por Abanico.

Estrategia de

Extracción

- •No de Niveles simultáneos.
- Secuenciamiento calles
- Velocidad de Extracción.
- Angulo de extracción entre calles


FlowSim SLC

- •Variación Ley de Corte
- Criterio Máxima extracción.
- •Criterio Mínima Extracción.

Plan Minero

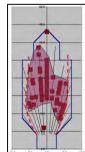
- •Tonelaje Extraído Tonelaje de Fino por Año
- •Ley Media por Nivel
- Dilución No Planificada

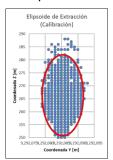
FlowSim SLC 1.0

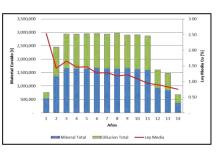
Diseño Mina

Modelo Bloques

FlowSim SLC Plan 1.0


Yacimiento


• Modelo de Bloques


Modelo Económico

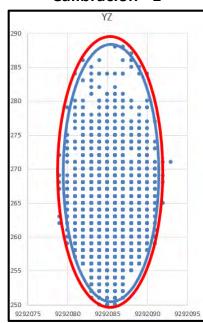
- •Ley de Corte.
- •Ley Media In-situ.
- Dilución Planificada.

Calibración de elipsoide

Plan de producción

Diseño Minero

- Largo de Calle
- Distancia entres Calles
- Burden

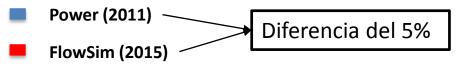

FlowSim SLC Cada Ring es considerado un punto y extrae la cantidad de tonelaje desacuerdo a un plan de producción.

Plan Minero

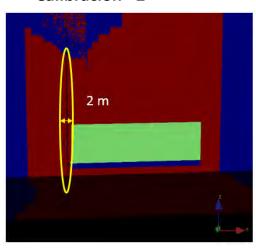
- •Tonelaje Extraído Tonelaje de Fino por Año
- •Ley Media por Nivel
- Dilución No Planificada

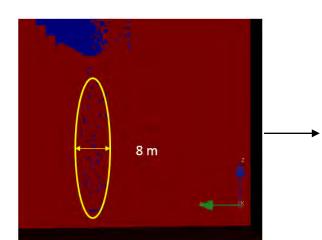
FlowSim SLC – Calibración

Calibración - 1



Punto Aislado


Parámetros Calibración	Valor	
Cv	4	
n	3.5	
m	0.5	
Tonelaje	6,237	
Ancho	10,5 m	
Alto	30 – 33 m	


Geoff Dustan and Gavin Power (2011)

Zona de recuperación primaria con ancho de 10 m (promedio). Las zonas de recuperación primaria no interactúan.

Calibración - 2

Parámetro Calibración	Valor	
CV	3	
n	5	
m	0.5	
Tonelaje	1200	
Ancho	11 - 13 m	
Alto	35 - 40 m	

Probabilidades			
0.083	0.125	0.083	
0.083	0.25	0.083	
0.083	0.125	0.083	

FlowSim SLC – Criterios de Planificación

- Ritmo de extracción máximo tpd.
- Máxima extracción diaria en abanico.
- Máxima y mínima extracción por abanico.
- Secuenciamiento de extracción entre calles y niveles.
- Ángulos entre niveles y calles.
- Máximo numero de niveles simultáneos en extracción.
- Cierre de abanico (Criterio Ley de corte).

FlowSim SLC – Criterios de Planificación

Datos de entrada Simulación

Cuantificación de Reservas

Mina Sub Level Caving de Cu(Primario)-Au(Secundario)

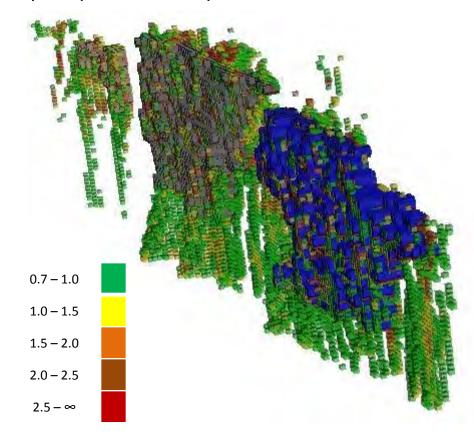
Tonelaje: 33.1 MT

Ley media: 1.43%

Dilución planificada: 35.5%

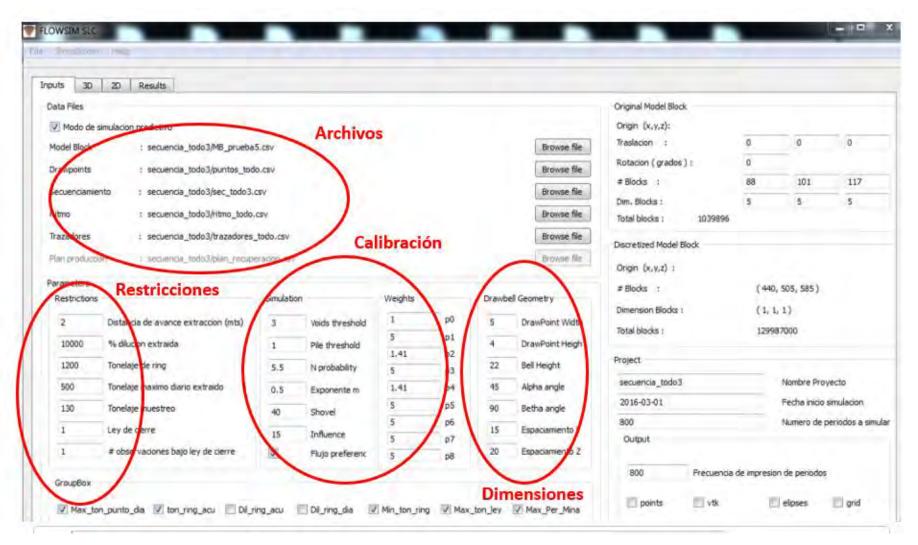
Datos de Entrada

Ley de corte: 0.80%


Ritmo mina: 7,200 tpd

Largo calle: ~40 metros

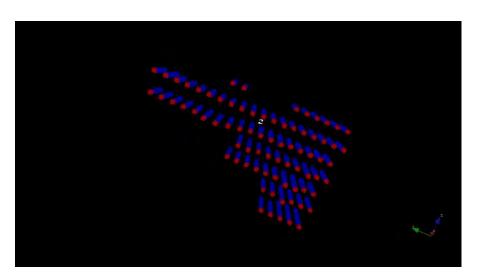
Máx. extracción abánico: 400 tpd

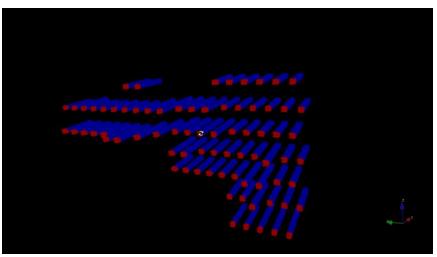

Burden: 2.0 m

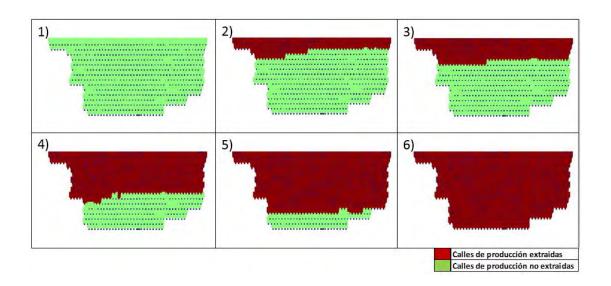
17 Niveles

FlowSim Sublevel Caving

Interfaz Usuario

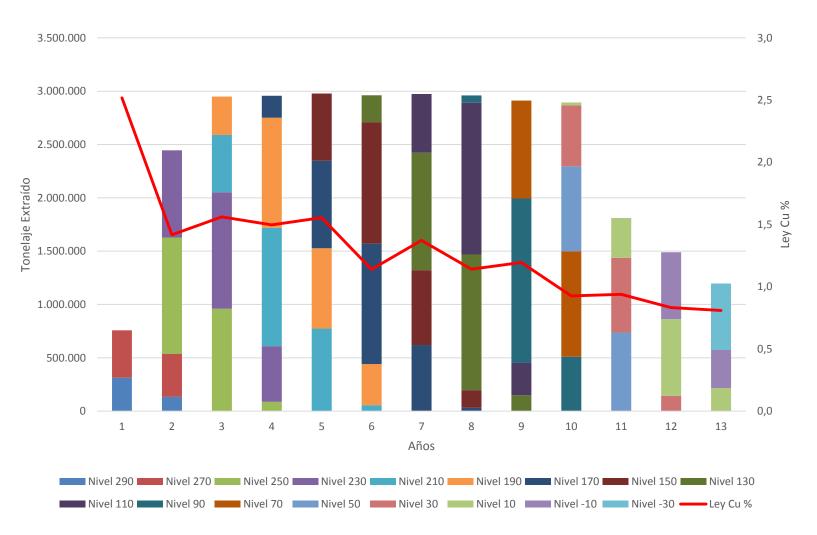

FlowSim SLC – Escenarios de Extracción

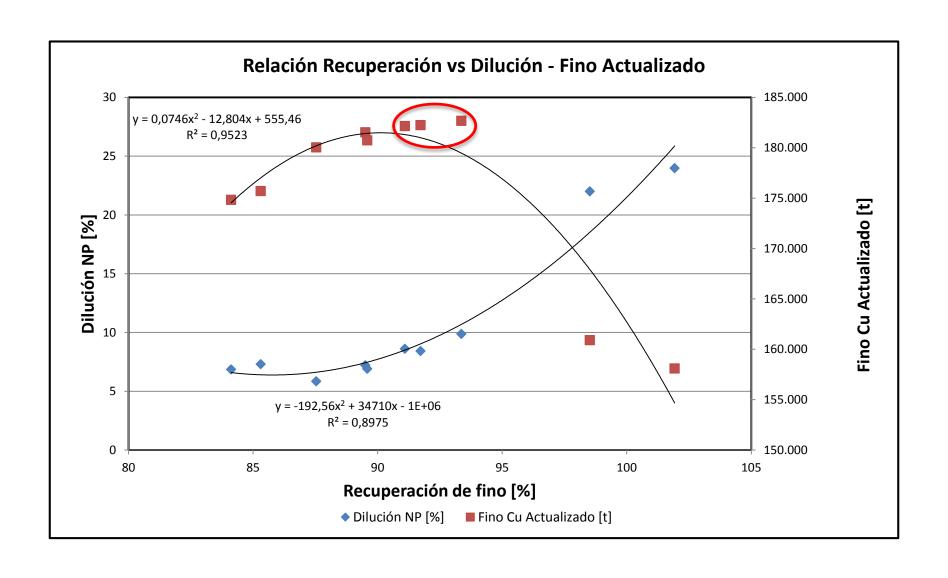

Criterio Planificación


Resultados Simulación

Casos	Ley de Cierre (Lc) (%)	Extracción Mín. Abanico (%)	Extracción Máx. Abanico (%)	LOM [años]	Tonelaje [t]	Fino Cu [t]	Ley Cu [%]
				In-situ	26,509,670	356,054	1.34
1	0.80	100	100	13	25,033,130	299,511	1.20
2	0.80	30	120	14	25,489,686	311,677	1.22
3	0.80	30	130	14	26,701,328	318,686	1.19
4	0.80	30	140	15	27,886,856	324,341	1.16
5	0.80	30	∞	20	40,781,523	350,774	0.86
6	0.72	100	100	14	25,756,686	303,730	1.18
7	0.72	30	120	14	26,839,896	318,956	1.19
8	0.72	30	130	15	28,256,042	326,576	1.16
9	0.72	30	140	16	29,559,025	332,413	1.12
10	0.72	30	∞	22	44,916,229	362,909	0.81

FlowSim SLC – Visualización





FlowSim SLC – Plan de Producción

Ejemplo - Caso 1: Criterio 100% - Calle < Lc= 0.72% - 30% Extracción

FlowSim SLC – Análisis de Resultados

FlowSim SLC – Conclusiones

- 1. El SLC es un método subterráneo masivo de bajo costo y alta recuperación/ productividad aplicable a mediana minería.
- 2. Su principal desventaja es la cantidad de dilución lo cual requiere una planificación estratégica.
- FlowSim SLC permite evaluar escenarios de planificación y defiinir la estrategia de extracción permitiendo obtener el maximo valor del yacimiento.

Presentación

Planificación estratégica de explotaciones de caving por sub niveles en Mediana Minería

Ph.D Raúl Castro, Universidad de Chile M.Sc. Álvaro Altamirano, BCTEC Ingeniería y Tecnología

08 de Agosto 2016

