

SONAMI

SEMINARIO LA NUEVA MEDIANA MINERÍA

LA EVALUACIÓN DE RIESGOS EN LA MINERÍA

Juan Rayo P. JRI Ingeniería S.A.

- Todas las operaciones minero-metalúrgicas tienen algún grado de incertidumbre, las que se transforman en vulnerabilidades si no son debidamente controladas y/o mitigadas. Estas debilidades se deben a:
 - Los antecedentes geo-minero-metalúrgicos del yacimiento en explotación son incompletos (fallas geomecánicas, arcillas, impurezas, etc.).
 - El diseño de las obras minero-metalúrgico fue incompleto y/o impreciso (cuellos de botella, deficiencias operativas, controles inadecuados, etc.).
 - La operación de cada etapa no tiene adoptada buenas prácticas y las fallas son frecuentes o mayores (paralizaciones, accidentes, impacto a terceros, etc.).
- Los problemas reiterados o catastróficos en la gestión de una empresa minera pueden afectar el negocio.
- El análisis de riesgos oportuno, serio y completo permite definir medidas de mitigación que lo hacen controlable y aseguran una buena gestión económica de la empresa.

CLASIFICACIÓN DE RIESGOS

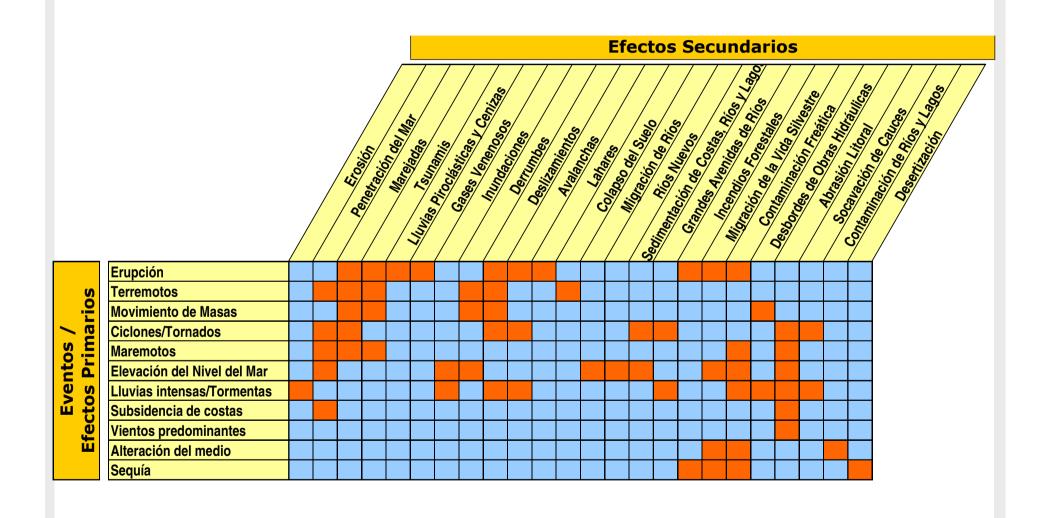
Los riesgos técnicos en el ámbito minero-metalúrgico pueden ser clasificados por el origen de la falla o por la consecuencia del evento.

Por Origen: Riesgos Naturales

Riesgos Operacionales

■ Por Consecuencia: Riesgos a la Salud de los Trabajadores

Riesgos Ambientales


Riesgos Económicos (Producción)

Riesgos Legales/Imagen/Reputación

MATRIZ MUNDIAL DE RIESGOS NATURALES

RIESGOS OPERACIONALES HABITUALES

Primarios:

- Fallas geotécnicas
- Equipamiento inadecuado

- Errores diseño / construcción
- Personal incompetente

Secundarios:

- Colapsos estructurales
- Incendios
- Corte de suministros
- Paralizaciones prolongadas

- Derrumbes /obstrucciones
- Colisiones / atropellos
- Embanques / derrames
- Colapso de tranques

EL RIESGO ESTÁ SIEMPRE PRESENTE

Probabilidad de muerte al beber agua potable en USA Todo el mundo sigue tomando agua sin cuidados especiales	1 en 1.700.000
Probabilidad de tener un accidente aéreo por despegue La mayoría de las personas viaja en avión sin preocupaciones	1 en 500.000
Probabilidad de muerte en accidente casero La preocupación por evitar accidentes caseros es mínima	1 en 9.000
Probabilidad de muerte por cáncer, por fumar 20 cigarrillos diarios Existen campañas importantes para que la gente deje de fumar	1 en 300
Probabilidad de falla en lanzamiento de cohetes (NASA) Exhaustivos procedimientos de verificación para el lanzamiento	1 en 100

■ JRI ha ejecutado alrededor de 10 análisis de riesgos completos para diversas empresas nacionales. Algunos resultados relevanes, de impacto superior a 100 KUS\$, son:

Área	Riesgo	%	Consecuencia
Minas	Incendio (elect./eq.) Colapso (obs./der.) Falla equipos Falla suministros Otras	_	S/E/L S/E/L E/S E Varios
Plantas	Incendios Falla equipos Embanques/obstruccione s Falta suministro	-	_
Relaves/Aguas	Derrames naturales Derrames operacionales	7 93	A/E/L A/L/E

CUANTIFICACIÓN DEL RIESGO

El Riesgo de cualquier sistema frente a un evento creíble puede ser cuantificado considerando la Probabilidad que ocurra y la Consecuencia que provoca:

$$R (US\$) = P (\%) X C (US\$)$$

- El riesgo puede ser clasificado como riesgo actual (RA), después de detectado, o riesgo remanente (RR) cuando se adoptan medidas de mitigación para disminuir la probabilidad de ocurrencia y/o la consecuencia.
- Algunas empresas manejan parcialmente el riesgo con seguros, otras lo descuenta de su VAN global pero, en general, la mayoría los ignora.

PROBABILIDAD DE OCURRENCIA

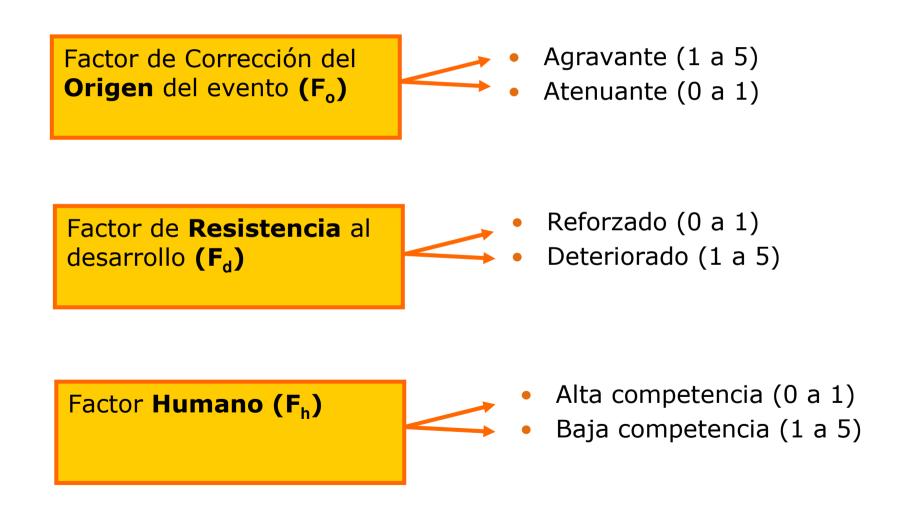
El modelo utilizado por JRI para el cálculo de probabilidades es el siguiente:

$$P_e = BEG \times F_o \times F_d \times F_h \times H$$

Donde:

- P_e Probabilidad de Ocurrencia del evento que daña/afecta una obra/sistema en algún momento de su vida útil remanente (%).
- **BEG Probabilidad Base Estadística General** del evento sobre el tipo de obras/sistemas considerados (eventos/año).
- **F_o Factor de Corrección del Origen** del evento en el lugar que se evalúa (fortalezas/debilidades del diseño y construcción de la obra).
- **F**_d **Factor de Corrección del Desarrollo** del evento (resistencia de la obra/sistema al evento, según su estado de conservación).
- **F_h Factor de Corrección Humano** (capacidad de reacción del personal frente a un evento).
- **H** Horizonte de vida útil remanente (años).

BASE ESTADÍSTICA GENERAL (BEG)



- Se determina a partir de:
 - Bases estadísticas mundiales
 - Bases estadísticas nacionales
 - Bases estadísticas locales / propia empresa
 - Juicio experto de varias especialidades
- El soporte del valor de la BEG determina la credibilidad del evento.
- Ejemplos destacados:
 - Incendio de una subestación (transformador): 1.000 ev/año de 150.000 S/E (USA/Chile).
 - Rotura operacional de un ducto de pulpa: 33 ev./400 años op (Sudamérica)

FACTORES DE CORRECCIÓN

Se evalúa caso a caso en la forma más completa posible:

CÁLCULO DE LAS CONSECUENCIAS

El modelo habitual para cuantificar las pérdidas de un evento es:

$$C = Q X (U + CF) + A + L$$

Donde:

- C Consecuencia, como Pérdida Total Económica (US\$)
- **Q Producción Perdida** neta en la unidad productiva afectada (TMF), corregida acopios y alternativas.
- U Unidad Potencial no generada de la unidad afectada (US\$/TMF)
- **CF Costos Fijos** unitarios de la unidad productiva afectada (US\$/TMF)
- A Costos de Ajustes y reposición o reparación del bien dañado (US\$)
- L Pago de Compensaciones Legales a terceros o a los trabajadores (US\$)

COSTO DEL DAÑO A LAS PERSONAS (L)

Consecuencia Potencial	MAGNITUD
Catastrófico (> 1.000 kUS\$)	Muerte o incapacitad total permanente.
Grave (100-1000 KUS\$)	Incapacidad parcial permanente. Lesiones que requieren hospitalización de varias personas.
Serio (10-100 KUS\$)	Lesiones o enfermedad ocupacional con días perdidos (aumento de tasas).
Leve (0 KUS\$)	Lesiones menores, sin tiempo perdido.

COSTO DEL DAÑO AL MEDIO AMBIENTE (L)

Consecuencia Potencial	MAGNITUD	
Catastrófico (> 1000 KUS\$)	Daño ambiental severo e irreversible.	
Grave (100 - 1000 KUS\$)	Daño ambiental significativo pero reversible. Requiere respuesta prolongada, a gran escala.	
Serio (10 – 100 KUS\$)	Daño ambiental fácilmente mitigable. Requiere respuesta limitada, de corta duración.	
Leve (< 10 KUS\$)	Daño ambiental mínimo. Necesita poca o ninguna respuesta.	

COSTO DE PROBLEMAS LEGALES (L)

Consecuencia Potencial	MAGNITUD
Catastrófico (> 1000 KUS\$)	Potencial encarcelamiento para ejecutivos. Paralización prolongada de operaciones. Litigaciones múltiples prolongadas.
Grave (100 - 1000 KUS\$)	Procesamientos legales y multas significativos. Pleitos muy graves, incluyendo demandas en grupo.
Serio (10 – 100 KUS\$)	Violación grave de reglamentos. Pleitos graves.
Leve (< 10 KUS\$)	Problemas legales menores, casos de incumplimiento de reglamentos

a) Descripción de la Situación Detectada

Es una antigua (1968) planta de filtrado de concentrados se detectó que la sala de control tenía cableado sobre piso, muebles de madera y archivos de papel, una cocinilla para colación, un solo operador sin baño cercano, sin detectores de humo/calor, sólo extintores manuales y mínima instrucción de seguridad.

b) Cálculo de la Probabilidad

BEG: 2 eventos /18x25x3 (salas x año)

: 0,0015 ev/año

Fo: 2 (antigua)

Fd : 4 (sin resistencia)

Fo: 3 (baja respuesta)

H: 20 años (vida remanente)

Pe: 72% (muy alto riesgo)

EJEMPLO DE ANÁLISIS DE RIESGO

c) Cálculo de la Consecuencia

Q: 200 TCuF/día x 5 días (paralización)

U: 1,4 KUS\$/TF (1.5 US\$/lb Cu)

CF: 0,8 KUS\$/TF (0.4 US\$/lb Cu)

A: 500 KUS\$ (estimado)

L: 100 KUS\$ (estimado)

d) Cálculo del Riesgo Actual

R : 2.100 KUS\$ (total)

: 550 KUS\$ (actualizado)

e) Medidas de Mitigación Posibles

Cambiar los muebles a metálicos, eliminar todo material combustible, poner detectores, sanear los cableados, capacitar operadores, etc. Costo total 60 KUS\$.

EJEMPLO DE ANÁLISIS DE RIESGO

f) Re-cálculos del Riesgo Permanente

Fd y Fo bajan a 0.5

Pe baja a 1.5%

Q baja a 1 día

A y L se reducen a 50 KUS\$ en total

C baja a 490 KUS\$

R es sólo 7 KUS\$ (despreciable)

g) Resultado

El riesgo detectado podría afectar los negocios de la empresa (VAC de 550 KUS\$) pero si se invierte 60 KUS\$ en medias de mitigación el riesgo prácticamente se anula.

- Las empresas mineras deben disponer de la información y el conocimiento para evaluar los riesgos de cualquier obra o sistema que operen (mina/planta/infraestructura).
- La evaluación de los riesgos permite jerarquizarlos y decidir en qué casos es necesario adoptar medidas especiales de prevención, control o mitigación, justificando adecuadamente los costos asociados.
- Las empresas mineras que efectúan adecuadas evaluaciones de riesgos para sistemas vulnerables o complejos, y tomen las acciones correctivas necesarias, no serán "sorprendidas" por eventos que deriven en pérdida de imagen, demandas de terceros y desastres comerciales.